A dominant role for mechanical resonance in physiological finger tremor revealed by selective minimization of voluntary drive and movement.

نویسندگان

  • Carlijn A Vernooij
  • Raymond F Reynolds
  • Martin Lakie
چکیده

There is a debate in the literature about whether the low- and high-frequency peaks of physiological finger tremor are caused by resonance or central drive. One way to address this issue is to examine the consequences of eliminating, as far as possible, the resonant properties or the voluntary drive. To study the effect of minimizing resonance, finger tremor was recorded under isometric conditions and compared with normal isotonic tremor. To minimize central drive, finger tremor was generated artificially by broad-band electrical stimulation. When resonance was minimized, tremor size declined almost monotonically with increasing frequency. There was no consistent large peak at a frequency characteristic of tremor. Although there was sometimes a peak around the tremor frequency during some isometric conditions, it was extremely small and variable; therefore, any contribution of central drive was minimal. In contrast, there was always a prominent peak in the isotonic frequency spectra. Resonance was, therefore, necessary to produce the characteristic tremor peaks. When central drive was minimized by replacing voluntary muscle activation with artificial stimulation, a realistic tremor spectrum was observed. Central drive is, therefore, not required to generate a characteristic physiological tremor spectrum. In addition, regardless of the nature of the driving input (voluntary or artificial), increasing the size of the input considerably reduced isotonic tremor frequency. We attribute the frequency reduction to a movement-related thixotropic change in muscle stiffness. From these results we conclude that physiological finger tremor across a large range of frequencies is produced by natural broad-band forcing of a nonlinear resonant system, and that synchronous central input is not required.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The complete frequency spectrum of physiological tremor can be recreated by broadband mechanical or electrical drive.

Two frequency peaks of variable preponderance have been reported for human physiological finger tremor. The high-frequency peak (20-25 Hz, seen only in postural tremor) is generally attributed to mechanical resonance, whereas the lower frequency peak (8-12 Hz, seen in both postural and kinetic tremor) is usually attributed to synchronous central or reflexive neural drive. In this study, we dete...

متن کامل

The Complete Frequency Spectrum of Physiological Tremor Can Be Recreated by Broad-band Mechanical or Electrical Drive. Running Title: Physiological Tremor Can Be Recreated by Broad-band Drive Aix-marseille Université Et Cnrs

16 Two frequency peaks of variable preponderance have been reported for human physiological 17 finger tremor. The high frequency peak (20-25 Hz, seen only in postural tremor) is generally 18 attributed to mechanical resonance, whereas the lower frequency peak (8-12 Hz, seen both in 19 postural and kinetic tremor) is usually attributed to synchronous central or reflexive neural 20 drive. Here, w...

متن کامل

The resonant component of human physiological hand tremor is altered by slow voluntary movements.

Limb resonance imparts a characteristic spectrum to hand tremor. Movement will alter the resonance. We have examined the consequences of this change. Rectified forearm extensor muscle EMG and physiological hand tremor were recorded. In postural conditions the EMG spectrum is relatively flat whereas the acceleration spectrum is sharply peaked. Consequently, the gain between EMG and acceleration ...

متن کامل

The Dynamics of Voluntary Force Production in Afferented Muscle Influence Involuntary Tremor

Voluntary control of force is always marked by some degree of error and unsteadiness. Both neural and mechanical factors contribute to these fluctuations, but how they interact to produce them is poorly understood. In this study, we identify and characterize a previously undescribed neuromechanical interaction where the dynamics of voluntary force production suffice to generate involuntary trem...

متن کامل

Pre-Synaptic Inhibition of Afferent Feedback in the Macaque Spinal Cord Does Not Modulate with Cycles of Peripheral Oscillations Around 10 Hz

Spinal interneurons are partially phase-locked to physiological tremor around 10 Hz. The phase of spinal interneuron activity is approximately opposite to descending drive to motoneurons, leading to partial phase cancellation and tremor reduction. Pre-synaptic inhibition of afferent feedback modulates during voluntary movements, but it is not known whether it tracks more rapid fluctuations in m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 109 9  شماره 

صفحات  -

تاریخ انتشار 2013